Waste as a Source of Energy

Wastes can be transformed into clean and efficient energy and fuel by a variety of technologies, ranging from conventional combustion process to state-of-the art plasma gasification technology. Besides recovery of substantial energy, these technologies can lead to a substantial reduction in the overall waste quantities requiring final disposal, which can be better managed for safe disposal in a controlled manner while meeting the pollution control standards.

Waste-to-energy projects provide major business opportunities, environmental benefits, and rural development.  Feedstocks can be obtained from a wide array of sources without jeopardizing the food and feed supply, forests, and biodiversity in the world. Let us take a look at the major resources for waste-to-energy plants:

Agricultural Residues

Crop residues encompasses all agricultural wastes such as bagasse, straw, stem, stalk, leaves, husk, shell, peel, pulp, stubble, etc. Large quantities of crop residues are produced annually worldwide, and are vastly underutilised. Rice produces both straw and rice husks at the processing plant which can be conveniently and easily converted into energy. Significant quantities of biomass remain in the fields in the form of cob when maize is harvested which can be converted into energy. Sugar cane harvesting leads to harvest residues in the fields while processing produces fibrous bagasse, both of which are good sources of energy. Harvesting and processing of coconuts produces quantities of shell and fibre that can be utilized.

Current farming practice is usually to plough these residues back into the soil, or they are burnt, left to decompose, or grazed by cattle. These residues could be processed into liquid fuels or thermochemical processed to produce electricity and heat. Agricultural residues are characterized by seasonal availability and have characteristics that differ from other solid fuels such as wood, charcoal, char briquette. The main differences are the high content of volatile matter and lower density and burning time.

Animal Waste

There are a wide range of animal wastes that can be used as sources of biomass energy. The most common sources are animal and poultry manures. In the past this waste was recovered and sold as a fertilizer or simply spread onto agricultural land, but the introduction of tighter environmental controls on odour and water pollution means that some form of waste management is now required, which provides further incentives for waste-to-energy conversion.

The most attractive method of converting these waste materials to useful form is anaerobic digestion which gives biogas that can be used as a fuel for internal combustion engines, to generate electricity from small gas turbines, burnt directly for cooking, or for space and water heating.

Forestry Residues

Forestry residues are generated by operations such as thinning of plantations, clearing for logging roads, extracting stem-wood for pulp and timber, and natural attrition. Harvesting may occur as thinning in young stands, or cutting in older stands for timber or pulp that also yields tops and branches usable for biomass energy. Harvesting operations usually remove only 25 to 50 percent of the volume, leaving the residues available as biomass for energy.

Stands damaged by insects, disease or fire are additional sources of biomass. Forest residues normally have low density and fuel values that keep transport costs high, and so it is economical to reduce the biomass density in the forest itself.

Wood Wastes

Wood processing industries primarily include sawmilling, plywood, wood panel, furniture, building component, flooring, particle board, moulding, jointing and craft industries. Wood wastes generally are concentrated at the processing factories, e.g. plywood mills and sawmills. The amount of waste generated from wood processing industries varies from one type industry to another depending on the form of raw material and finished product.

Generally, the waste from wood industries such as saw millings and plywood, veneer and others are sawdust, off-cuts, trims and shavings. Sawdust arise from cutting, sizing, re-sawing, edging, while trims and shaving are the consequence of trimming and smoothing of wood. In general, processing of 1,000 kg of wood in the furniture industries will lead to waste generation of almost half (45 %), i.e. 450 kg of wood. Similarly, when processing 1,000 kg of wood in sawmill, the waste will amount to more than half (52 %), i.e. 520 kg wood.

Industrial Wastes

The food industry produces a large number of residues and by-products that can be used as biomass energy sources. These waste materials are generated from all sectors of the food industry with everything from meat production to confectionery producing waste that can be utilised as an energy source.

Solid wastes include peelings and scraps from fruit and vegetables, food that does not meet quality control standards, pulp and fibre from sugar and starch extraction, filter sludges and coffee grounds. These wastes are usually disposed of in landfill dumps.

Liquid wastes are generated by washing meat, fruit and vegetables, blanching fruit and vegetables, pre-cooking meats, poultry and fish, cleaning and processing operations as well as wine making.

These waste waters contain sugars, starches and other dissolved and solid organic matter. The potential exists for these industrial wastes to be anaerobically digested to produce biogas, or fermented to produce ethanol, and several commercial examples of waste-to-energy conversion already exist.

Pulp and paper industry is considered to be one of the highly polluting industries and consumes large amount of energy and water in various unit operations. The wastewater discharged by this industry is highly heterogeneous as it contains compounds from wood or other raw materials, processed chemicals as well as compound formed during processing.  Black liquor can be judiciously utilized for production of biogas using anaerobic UASB technology.

Municipal Solid Wastes and Sewage

Millions of tonnes of household waste are collected each year with the vast majority disposed of in open fields. The biomass resource in MSW comprises the putrescibles, paper and plastic and averages 80% of the total MSW collected. Municipal solid waste can be converted into energy by direct combustion, or by natural anaerobic digestion in the engineered landfill. At the landfill sites the gas produced by the natural decomposition of MSW (approximately 50% methane and 50% carbon dioxide) is collected from the stored material and scrubbed and cleaned before feeding into internal combustion engines or gas turbines to generate heat and power. The organic fraction of MSW can be anaerobically stabilized in a high-rate digester to obtain biogas for electricity or steam generation.

Sewage is a source of biomass energy that is very similar to the other animal wastes. Energy can be extracted from sewage using anaerobic digestion to produce biogas. The sewage sludge that remains can be incinerated or undergo pyrolysis to produce more biogas.

Share!

Related Articles:

About the Author 

Salman Zafar is a renowned expert in waste management, biomass energy, waste-to-energy and sustainable development. He is proactively engaged in creating mass awareness on renewable energy, waste management and environment.
Salman is the CEO of BioEnergy Consult, apart from being the Founder of Cleantech Solutions and EcoMENA.
Salman has successfully accomplished a wide range of projects in the areas of biogas technology, biomass energy, waste-to-energy and solid waste management. He has participated in numerous national and international conferences and has authored many articles in reputed journals and magazines.
Salman can be reached at salman@bioenergyconsult.com or salman@cleantechloops.com.

3 thoughts on “Waste as a Source of Energy

  1. Dear Salman Zafer your above article is very useful as because of use of chemical fertiliser we are killing the soil by killing earthworms & other microorganism . people are now moving toward organic farming again—– where we use cowdungmanure getting after discharge of biogas plants —— but can we develop mechanically animal -driven —gearbox -Generator system for producing electrical energy for agriculture & home needs from animal . This will help to use animal power during lien period-(off season) .
    Animal specially oxen power can be better utilised.
    I
    I would like to know about some company commercially producing animal driven -gear-generator system

    can you help me –

Leave a Reply